当前位置 首页 >报告诀窍 >

从“虚拟人”到“数字医学”

作者:jkyxc 浏览数:

zoޛ)jm5םv]y_m4]{iiMuiuM?|_|ky计划的名字通俗易懂而且充满想象力,它被正式命名为:虚拟人类计划。这个大胆的设想在当时一度引起医学界的怀疑。要采集这些数据必须先将人体标本切成薄片,并用数码相机和扫描仪对切面进行拍照、扫描,之后将数据在计算机里合成三维的立体模型,其中的精心程度与庞大的工作量可想而知。1991年和1994年研究小组分别选择了男女各一具尸体作为标本获取了完整的人体数据,这些数据称为V.H.P.数据集。在1989年到1994年的五年里,美国人把虚拟人类的构想推进到了试验阶段,这意味着美国“虚拟人”技术已经达到了可视程度。

虚拟人类自己这显然是一个大胆的设想,而当人们通过理性分析发现“虚拟人”绝不是另外一种克隆时,“虚拟人”研究就必然成为一项激动人心的重大科研项目。

1996年在美国国防部非致命武器委员会的积极支持下,橡树岭国家实验室牵头酝酿“虚拟人”创新计划。在他们的构想中,“虚拟人”应该能够模拟人体在外界物理刺激下的反应,他会象真人一样骨头会断、血管会出血,有专家称之为:虚拟物理人。如果说虚拟可视人还仅仅是一个可供人们观看的人体模型,虚拟物理人则使得这个模型有史以来第一次对外界刺激有了反应。在科学家的计划中它不再是一个静止的标本,人类将在计算机建造的虚拟世界中看到另一个自己在呼吸、走动,更会通过模拟各种环境的变化,探测人体极限。这个计划的目标已经非常接近科学家一直梦想的虚拟人类。

由于构成“虚拟人”的数据来源于自然人,因而“虚拟人”具有民族、区域等特征,东方人的特点明显的与欧美人不同,因此中国建立具有自已国家人种特征的数字化人体模型成为填补空白的问题。

美国“虚拟人”研究小组在2000年就已经建立了人体主要器官的三维模型,中国的“虚拟人”计划要在技术上占领哪个制高点?人体内的血管系统可以分为四级,数量达到上千万条,手术时医生往往需要更为完整、微观的血管地图,以制定安全的手术方案。长期以来尽管医学专家尝试了很多办法,但是这些大大小小错综复杂的血管网络的具体形态分布仍然充满未知,因此怎样将人体血管系统通过不同颜色准确区分出来,成为一项具有挑战性的课题。

从1996年开始,美国“虚拟人”研究小组就面向全球征集建立血管模型的解决方案,但是其中的关键问题一直没有获得解决,而钟世镇院士独有的血管铸型技术为中国人在这个领域有所突破提供了可能。由此中国“虚拟人”项目的关键技术被正式确定为攻克血管模型。2001年11月举行的第174次香山科学会议被认为是中国数字“虚拟人”研究的开篇。中科院李华博士、第一军医大学钟世镇院士、首都医科大学罗述谦教授等人向国家提出了研究中国“虚拟人”的设想,很快“虚拟人”技术研究被列入国家863项目。

2002年12月,广西一名19岁的女孩因不慎误食毒蘑菇引起食物中毒死于广州,家属同意捐献其遗体。经过科学家们仔细检查与评估,最终决定以她作为人体标本采集数据。中国第一例“虚拟人”——虚拟人女一号数据开始采集。中国第一例“虚拟人”数据采集,每片标本的切削间距为0.2mm,对每片标本进行拍摄平均需要3分钟,为保证切削连续性,工作人员要在低温环境下昼夜轮换持续工作,整个切削过程持续了一个月。2003年2月16日虚拟人女一号完成图像采集。中国第一例虚拟人体数据采集共获得8556张断层图片,每片间距0.2mm,总数据量149.7GB,切片数据被存成计算机可以识别的数字信息,进行数据处理。罗述谦教授领导着一个研究小组,海量数据汇集到这里,他们面对的问题就是将近万张二维图片在计算机里合成,并将其数字化变为三维立体人。要完成这个工作,首先要解决的是数据的精确配准问题,所谓配准就是把这8556层对齐,因为切削加工时间比较长,前后有一个多月的时间,由于机械加工的一些晃动,数码相机的移动,以及照明的不一致性,因此就造成一些断层图像有相对左右位移和上下位移,如果不能有效地校正这些位移的话,重建出来的这个人体周围就是虚的。将8556张图片中大大小小上千个器官组织一一对准,是一个要付出极大耐心的工作。尽管可以利用专门的软件作为工具,要完成这样的任务对于负责模型重建的工作人员仍然是一项极大的挑战。

大脑是人体最为重要的生命器官,人体许多疾病的发生、发展与大脑深度的核团密切相关,长期以来大脑核团的具体形态与结构一直是一个谜。研究人员希望通过“虚拟人”技术将这些大脑核团准确标识出来,为临床医学家提供更为精确的三维图谱。

人体三维模型建立的精确与否直接关系到“虚拟人”数据集的应用价值。血管模型的精确重建为将来临床上的进一步应用奠定了基础。同时李华博士的小组还进行了另一项具有挑战性的工作,他们尝试对人体最为复杂的神经组织进行重建。从2003年虚拟人女一号数据集采集完成以来,经过近一年多的努力,基本完成了人体标本大部分器官组织的重建工作。

数字医学研究取得重要进展

“虚拟人”能做什么?究竟有什么用?成为大家日益关心的问题。

近百年来尽管人类医疗手段在不断更新,但是针对人体重要器官的手术风险依然严重威胁着患者的健康与生命。医生一直致力于建立更为有效地模拟手术平台,训练临床医生便捷的获得手术经验。“虚拟人”技术的出现有助于这个梦想成为现实。它给全球的医学工作者在改变现有手术训练模式方面提供了极大的想象空间。

眼睛是人身上最为脆弱的器官之一,长期以来眼科手术的复杂性以及高危险性,一直是令临床医生头疼的问题。一名眼科医生在走上手术台之前至少要经过50次手术训练。医学上一直在探索一种能够低成本、耗时短、有效的手术培训方式。

针对眼科医生在手术训练方面遇到的困难,厦门大学计算机系王博亮教授尝试建立人体眼球单个器官的模型。在他的实验中,眼球的切削精度达到了20μm的细胞级别。为了使自己的研究成果能够紧密结合临床,王博亮找到了眼科手术专家吴医师作为合作伙伴,共同研究虚拟眼球在临床上应用的可能性。他们的目标是建造一只能模拟人类眼睛的各种生理机能的虚拟眼球。它不仅能够帮助眼科医生进行手术训练,还帮助眼科专家揭示人类眼科疾病的发生机理。

今天已经有越来越多的科学家从自己的专业角度出发加入“虚拟人”技术研究领域。他们纷纷从人体单元器官的重建入手,尝试对人体主要组织器官进行更为细致、精确的重建。他们设想在不远的将来可以通过复杂技术将这些分散的器官整合为一个三维的立体人体模型。这个模型的建立将把人类对自身的认知提高到一个前所未有的水平。尽管目前还处于研究的初级阶段,但是科学家们坚信:他们目前所做的种种努力正在为将来激动人心的各种可能性铺平道路。

在完成可视化人体模型的基础上,科学家们还希望“虚拟人”还能像真实的人类那样具有各种物理、生化反应。在以往的科学实验中,大量的采用动物甚至是真人来得到实验数据,在成本居高不下的同时,实验结果还存在各种不确定性。“虚拟人”技术的成熟有助于改变这种现状。在“虚拟人”身上加载人体物理反应模型之后,能够很方便的获取各种反应数据,从而让“虚拟人”代替人类在不可想象的严酷环境中完成人类不可能完成的任务。

今天“虚拟人”技术的应用设想还在不断延伸,更多领域专家的介入使得我们看到“虚拟人”应用的更多可能,在交通、体育、服装、航空、航天等领域,“虚拟人”将如何改变我们的生活,这个充满诱惑的问题正在不断激发着人类的想象力。毫无疑问“虚拟人”技术的发展为人类生活的改变展现了广阔的前景,与民众对此表现出的极大热情相对应,科学家们对于这种预测表现出更为谨慎的态度。

以“虚拟人”技术为基础的数字医学是新兴的学科,在我国已经有了积极的探索和长足的发展,在服务临床方面进行了积极有益的探索。

 第三军医大学交通医学研究所尹志勇等人采用计算机仿真技术开展模拟颅脑、胸部撞击伤的研究,深化了对损伤机制的认识,事故再现的分析研究,协助交通管理部门更准确地判断事故的发生情况和肇事者的责任,受到有关部门的高度评价。第三军医大学野战外科研究所陈青等利用计算机图像重建技术,采用三维图像对外周神经再生规律进行可视化研究。类似的研究工作在全国多家研究机构已经大量开展。

2007年,“怪头娃”刘京在厦门市第一医院手术成功。这是我国完成的首例颅腔重建全颅再造手术,也是国内首例在临床上成功运用计算机三维仿真技术设计全颅再造。厦门大学计算机系王博亮教授带领团队应邀参加设计了颅骨切割和重建的计算机模拟手术过程,精确测算了刘京大脑的容积与颅腔的容积,为手术的成功奠定了基础。

张绍祥教授主持的“中国人体三维结构数据库建立”、“中国数字化可视人体数据获取关键技术研究”、“中国数字化可视人体分割数据集的建立”等6项国家自然科学基金课题获重要研究成果。

北京天坛医院开展的“颅内肿瘤虚拟仿真研究”;昆明军区总医院开展的“数字技术在脊柱侧弯手术治疗中的应用”;广东省自然科学基金支持的“数字医学技术在肝胆胰外科疾病诊断和治疗的应用研究”;南方医科大学珠江医院开展的“数字医学技术在肝血管瘤切除术中的应用研究”、数字医学技术在V、VI段肝癌切除术中的应用”等研究对推动我国数字医学研究的发展做出了重要的贡献。

数字化医学内植物技术研究工程化

植入物在医学领域的应用已非常普遍,仅以在骨科的应用为例, 2002年世界骨科植入物的销售额已达到140亿美元,随着人口的老龄化和严重创伤疾病等的增加,这一数字还以每年20%的速度增长。近年来,随着数字化高新技术和生物科学技术的发展,借助计算机辅助设计与制造技术(CAD/CAM技术)、快速原型技术、计算机图像处理与三维建模等手段,上海交大以人工关节为切入点,研发人工关节设计、制造及临床应用中的数字医学关键技术,同时借助已开发的系列细胞学和分子生物学的手段,增强植入物的生物学功能,促进与人体组织的整合。

1. 个体化人工关节的快速化制作技术和应用

在国家863项目基金支持下,为了进一步克服影响个体化人工关节临床应用与推广的主要障碍,缩短假体的生产周期、降低成本,上海交大基于大批量定制理念开展了有关个体化人工关节的快速化制作技术的研发。依靠CAD/CAE/CAM/PDM技术、参数化变量化设计技术、虚拟制造技术、成组技术等新技术,对各关节假体的个性化需求进行分类,找出尽量多的共性元素,除关节优先区外,在不影响人工关节的力学性能和功能条件下,通过改变肩、肘、髋、膝、踝关节的设计,增加人工关节的共用组件,并减少共用组件的规格品种;统一原材料探伤、表面喷涂、焊接、杀菌、包装的工艺装备。对手术辅助器械设计和工艺流程采用同样的原则,生产用模具、夹具设计尽可能采用互换件,使制造技术合理化,优质、高效、快速地制造出满足用户个体化需求的假体。

2. 人体化人工关节的结构仿生和生物学优化

个体化人工关节多数以形态仿生为主。手术以恢复病损部位的大体形态和基本的生理功能为目的,甚至仅为了保肢,远未达到功能仿生的要求。为了进一步提高个体化人工关节对毁损关节功能替代的质量,上海交大开展了人工关节结构仿生优化研究:包括运动学仿生和稳定性仿生,研发符合正常肩、膝、髋、肘、踝关节的三维共轭活动模式以及重建大节段骨切除和软组织切除患者的关节稳定性,研发出具有自主知识产权的新型个体化假体。同时为了提高人工关节的生物相容性,上海交大开展了假体材料的优化研究,如在β型钛合金中加入生物相容性良好的铌和锆,使钛合金在保持其抗腐蚀性和力学强度的同时,进一步提高生物相容性、降低弹性模量,从而有效降低假体的应力遮挡效应;又如对假体表面真空等离子喷涂生物活性钛(Ti)、氧化钛(TiO2)涂层,使其具有优良的力学性能,加强涂层与合金基体的结合以及假体-骨整合,并实现个体化加工。

数字医学研究机构

全国各地纷纷成立数字医学研究机构,第三军医大学、上海交大、复旦大学分别成立了数字医学研究院和研究中心,国内至今已经构建了8个高精密度的中国人体数据集。

重庆市数字医学研究所(重庆市数字化人体工程研究中心)由第三军医大学建立,开展数字化可视人体的相关研究。第三军医大学于2002年正式成立“计算医学研究室”,并建立了首套中国数字化可视人体数据集,使中国成为继美国之后世界上第二个拥有完整可视人体自主知识产权的国家;2003年5月成立“重庆市数字医学研究所”;2007年成立“重庆市数字化人体工程研究中心”。目前建立了基于数字解剖学和数字医学研究的开放性实验室。研究成果包括2002年完成中国男性数字化可视人体数据集的建立和三维可视化;2003年完成女性数字化可视人体数据集等。中国数字化可视人体数据集荣获2007年国家科技进步二等奖;手部创伤修复解剖学研究及临床应用荣获2001年国家科技进步二等奖。

上海交通大学数字医学工程研究中心是国内第一家聚焦于“数字医学”创新研究与开发的教育部工程研究中心。自2006年经教育部批准立项建设以来,以技术开发与技术创新为宗旨,开展数字医学关键与核心技术的研究,发挥科研成果与临床及产业应用之间的桥梁作用,用所开发的临床技术推动我国现代医学技术的发展,用所形成的具有自主知识产权的工程技术推动我国高端医疗器械行业的发展。

目前上海交通大学数字医学工程中心已建立了三个数字医学的开放性研发平台,即医学内植物数字化技术研发平台、数字化临床技术研发平台和数字化医疗装备研发平台。拥有占地约1500平方的上海交通大学本部基地与建立在闵行校区和医学院下属医院的实验室和临床基地,形成了一个优势互补、资源共享的数字医学产、学、研一体化平台。

推荐访问:医学 数字 虚拟人

相关文章:

Top